~ Automatic Tools for Extending
Network Computation Capabilities of HLL

et beat, ol QIS ..uh-'-
Il o Ll 53a
ﬁ\.[b/cﬁ@_,\.'ﬂh«ﬂﬁ—‘t:ﬁﬂl

By
Abdulla M. Abu-Ayyash

Supervisor
Dr. Riad Jabri .

Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science in
Computer Science

Facylty of Graduate Studies
o/ University of Jordan

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Aug 1999

This thesis was successfully defended and aﬁproved on Aug 16"™. 1999

Examination Committee Signature

D, Riad Jabri, Chairman
Assoc. Prot. Of Compiler Design

Dr. Ahmed Al-Jaber, member e S
Assoc. Prof. of Algorithms 7 3”\)‘3\15_-

Dr. Ahmad Sharieh, member
Ass. Prof. Of Parallel Processing

Dr. Munib Qutaishat, member
Ass. Prof. Of Data Base Management Systems

Dr. Abdulraouf Yousef Al-Hallag ”
Ass. Prof. of Computer Networks. oo S CA«/;/ 1,.“4&/47

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Acknowledgements

I would like to express my special warm thanks to my supervisor Dr. Riad Jabri, for
his paticnce and guiding hand. Thanks also to the discussion committee Dr. Munib

Qutaishat, Dr. Ahmed Al-Jaber, Dr. Ahmad al-sharaiah and Dr. Abdulraouf Al-Hallag

for their enrichment comments.

A very special warm thanks 10 Husam Saadeh, Mohanad Al-Selawi and Einas Al-
Omari for their encouragement and continuous support. Thanks to my collcagues

Amjad Hudcb, Bian Shawer and Ansar Majdalina for their spiritual support. To all [

would say, “Brothers and Sisters”

Thanks also to my mother, [ather, brother and sisters for providing me¢ with the

encouragement, support and time when 1 needed it.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

List of contents

Examination Commuitlee. . ..o.oviivieiiiiiiiin it reeterierneeaerarenans ii
Dedication.......... iii
Acknowledgement ... iv
Listofcontents.............. . v
Listof tables... ..o vi
List of ﬁgdrcs ... vii
APPENAICES. ..o vili
ADSIract. ix
1 - Chapter 1: Introduction.................oi 1
L HISLOTY e 2
P2 TREsIS SUUCIUTC. ..o e 3
1.3 ContrbULION. ..o 4

2 - Chapter 2: Background. ... 5
20 Itroduction.o 5
2.2 HLL and classical compulation model....................co 5

221 Inroduchion. ... 5
2.2.2 HLL classification and design goals........... R 6
2.2.3 New Challenges for HLL ..o 7
2.2.3. 1 New architeCtureso..ouiii e 8
2.2.3.2 Standards and portability................... 8
2233 Network Models. ..o, 9
2.2.3.4 New Applications. ..o 9
2.2.3.5 SCCUILY ottt 10
2.3 Network COmputation........o.ooe e, 11
2.3.1 Nclwork computation classifications................oooivi tl
2.3.2 Programming Languages for network computation........................ 12
2320 dava.. e, 12

2 3 2 L AN 13

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2.3.3 Exccution environment for network computation.......................... 16

233 PV M, 16
2.3 3 M A e, 17
2.3.4 Middle-tiers for network computation. ... 19
2. 3 R 19
2342 CORBA. ... 20
2343 DOOM. . e, 21
2 U BT Y . oottt A ¥
2.5 ConCIuSION. .. 22
3 - Chapter 3: New NCM Classification (CDP-Classification)o.ooaeee.. 23
3.1 [ntroduction.........‘.....H.................... ... 23
3.2 Kristian classificalion.o. i) 23
3.3 Antonio ct al Classification. ... 24
3.4 Suggested computation model classification (CDP-Classification)............ 27
3.5 Antonio et al Mobile Codc Paradigm and our classification..................... 30
3.6 ConCIUSION. ..o 30
4 - Chapter 4: Implantation.......coooiiiiiiiiiiiiinnoiiiieeee0 31
4.1 Known efTorts (o make use of NC models in FIILLS......ooooirviiiiine 32
4.2 HLL and network computalion i 33
4.3 Implantation Model. ... 34
4.3.] Basic COMEEPIS. . ..ottt e NUP 35
4.3.2 Network computation node (NCN)..............co i, 35
4.3.2.1 Network computation server (NCs).............ooiin, 40
4.3.2.2 Network computation client (NCe) oo 41
4.3.3 Network computation registry (NCr)........ PR 42
4.3.4 Network execution environment of HLL and cxccution scenario.. ... 42
435 Fault Tolerance..........coooiiiiiii i, 43
4.4 Comparison between Implantationand RPC...............oo L 44
4.5 Implementation considerations..........o.vooiiiiiiiiiii 46
4.6 CoNCIUSION. .. .0 et 47

.7 SUIMMIATY . e e e 48

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

5 - Chapter 5: Implementation.....coooiiviiiiiiniinn, era e e 49

5.1 Implementation [anguage. ... 50
5.2 Stmple Pascal Compiler, Interpreter and debugger ..., 51
5.3 VMServer: Simplified Network Computation Servero.oovvviveinnnn, 51
5.3.1 Pseudo code for VMServer.. ... 53

5.4 RE manager: Simplified Network Computation Client (NCe) 35
5.4.1 Pseudocode for REmanager..............ooooi i 56

5.5 Testing Environment ... 58

6 - Chapter 6: Conclusion and suggested Future work..ooovioiniiiiiiiianan, 6l
B L CONCIUSION. e e 61

G 2Fture WOtk . ..o e, 62
Appendix Ao, T PP 64
APPEndix B e e e e e e s se s r e r e 71
F N] 115 11 O O PO 73
APPERIX Do e i e s s e e s 79
Bibliography.....oooiiiiii e 80
Abstract in Arabic. .. e e e e 84

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vi

List of Tables

Table (1) Antonio et al. Classification for mobile code paradigm
Table (2) CDP-Classification

Table (3) Comparison between RPC and Implantation

Table (4) Results for testing the lightweight prograntptest.p

Tabte (5} Results [or testing the heavyweight program 1000.p

26

31

46

59

60

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vii

List of Figures

Fig (1) Abstract Implantation model of HLLs

I'ig (2) Network Computation Network (NCNet)

Fig (3) NCs , NCe components and NCr relationship.

Fig (4) NCs cxccution flowchart
Fig {5) NCc cxccution flowchart
Iigg (6) VMServer with threading

IFig (7) RE manager

36
37
38
39
54

37

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

viii

Appendices

Appendix A: EBNF for Simple Pascal Language
Appendix B: Basic Instruction set for the Stack machine
Appendix C: Test Programs

Appendix D: Table of Symbols Used

64

71,

73
79

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Abstract

Automatic Tools for Extending Network Computation Capabilities of -
High Level Languages

By
Abdulla M. Abu-Ayyash

Supervisor
Dr. Riad Jabri

Nclwqu computations have been inder study for several years. Now, it is one of the most
demanding subjeccts for information technology developers and users. The main idea behind
network computation (NC) is how to do computation over the network The fatemet hype
is onc cxanmple that makes the demand high. Today muitiple methods are being used to make
use of network computation, non of them tackles the legacy high-level language programs. In
this thesis a study about nctwork complutation models are investigated. A new classification is

proposed and a new network computation medel for legacy high-level language programs is

proposed named “lmplantation”.

[n this study, different models for network computations is investigated and
classified, using its properties, applications and programming languages. Different
classification for computation models is studied, and showed that such classifications are weak

to classily the network computation models. A new classification is introduced and named

CDP-Classifications.

We implement the new model for NC (Implantation) using the virtual machine of imperative
HLL. Such model can be usefu! for deploying legacy programs (written in imperative MLL) to
make usc of network computations. These computations can be used to utilize the available

network resources. In this model, HLL programs would be exccuted using multiple nodes

within a network.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Pigeon Post, Woodcut from 1481.
Coll. Bibl. de Gendve, Fabre 1963
“The Early History of Data Networks Napeleon's Internet”, 1994

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 1

Introduction

1.1 History

AL the first days of computers and around 1940, computations were mainty designed
with the centralized computer in mind. Programming languages design was also
atlecled with such a paradigm. Around that period the development of programming
languages motivation was how to use the von Neumann architecture (Georg, 1987) to
solve numerical problems. FORTRAN founded in 1956 (Alice, 1993) was the first
language to implement such a paradigm.

HLL programs were designed with two assumptio]ms in mind: code will be executed
on the same machine during all exccution time, and data is always available to the
program during cxccution. As new architectures (distributed sysicms, parallel
computers, data flow computer) (Barry, 1996)(Andrw, 1995) and computer networks
systems have been introduced; these two assumptions arc not applicable. Different parts
of the program can be exccuted on different machines and data can be accessed on
demand. This set new design goals for HLLs. New ﬁrogramnﬁng languages have
appcared to fulfill these goals and needs of architectures and the computer networking.
Examples of HLLs are Java (Jams, 1996) for network programming languages,
CHARM (Kale, 1994) for parallel programming languages, Maisie (Rajive, 1995) for
simulation languages and Telescript (Peter, 1996) for mobile programiming languages

(Tommyl, 1997).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Furthermore, to fulfill the need for simplicity and portability, some standards have

emerged based on remote procedure call RPC and distributed object technology. The

RPC was introduced by Bitrell and Nelson (1984). In their model procedure resides on
remote servers are executed as if they resides locally. Combining object-oricnted
paradigm with RPC architecture named distributed object technology serve as a solution
to solve the problem of portability and interoperability of applications over the network.
Two distributed object models have emerged as open standard specifications: Common
Object Request Broker Architecture CORBA and Distributed Component Object Model

DCOM (Chung, 1997).

As the nctworks are widely used, they became the backbone for modern
programming languages and applications. This led to the introduction of network
computation modcls to overcome the limited (absence) networking capabilitics of

HILLs.

Most computation models sugge.st new programming languages rather than
exiending network computation capabilities of the existing HLLs. The main objective of
this thesis is to address this issue by introducing and implemcnti'ng automated tools to
facilitate the use of existing HLLs in network computation and thus adapting their
respective legacy systems to the network environment. These tools are based on new
network computation model. Within the framework of this model an cxecution
environment is introduced that permits implantation of the execution units EU from

HLL into network computation nodes (NCN).

~ All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

The Implantation concept consists of decomposing the HLL into execution units

(EU). These units arc migrated from their native (home) nodes to different nodes of the

h

network for their c¢xecution. The native nodes module are called NCc while the

destination node modules are called NCs, see fig (1)

T

NCs
N e -

NCe
,.--..._<--..._'
EU U \J
<z !
A A
e A
/’/ | \ -
S S A
L NCS ‘ N
- — e —

Cs

A S

Fig (1): Abstract Implantation model of HLLs

1.2 Thesis Structure

This thesis is divided into the following chapters: chapter 2 is a background with
available network computation models, classifications, properties, applications and
available programming languages. Chapter 3 discuss a new classilication of
computation models. Chapter 4 describes the proposed network computation model for
HLL (i.e., Implantation Model). Chapter 5 describes the implementation for a simplified

two NCNs. Chapter 6 1s the conclusion and suggested future work.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1.3 Contribution

This thesis contribute to the current nelwork computation area specially in the
following:

¢ Classification of computation models: two classifications regarding
computational models were studied and shown that these models can not classify
all known models of computation. A suggested more comprehensive
classification be introduced.

e Network computation model for high level languages: we proposed, implement
and test a new model for network computation 1o be used with legacy HLL

programs. The model is named “Implantation”,

~ All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 2

Background

2.1 Introduction:

This chapter discusses HLLs classical computation model, and available nctwork

computation models with examples for each.

2.2 HLLs and classical computation model

[n this scction, we will study the evolution of HLL, the design goals, classifications,

and new challenges for modern computation.

2.2.1 Imtroduction:

During forty years of programming language development, multiple language
designs were made to fulfill different aspects of problem sblving. The number is
increasing rapidly, for example during the period from 1950-1960 only four procedural
languages was known, 1960-1970 around ten languages (Alice, 1993). At that time,

almost alt workers in the computer field knew all the languages available.

Today, there are hundreds of programming languages that are available, for sure no
onc can master them all. There arc still new ones emerge to fulfiil new design and

architeclure.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

222 HLL classification and design goals:

Classifications of HLLs are alwlays misleading. Languages arc more alike than
different, since the purposc of all languages is to communicate models from human to
machine. In addition, category namles are used loosely, and the same programming
languages belong to more than one classification (Alice, 1993). Never the less, all HLLs

have commeon design goals.

During forty ycars of language devclopment, many features appeared to be a key
design goals for programming languages, such as efficicncy, portability, readability,
modeling ability, simplicity, scmantic clarity and salety (Alice, 1993). The meaning of

cach design goal will be discussed shortly.

Lificiency is related to how easy or difficult to lranslate any feature within the
language into cfficient code, and how to improve or degrade the performance of

programs.

Portability 1s related to whether any {featurc within the language can be easily

implemented on different machincs.

Readability is related 1o whether any feature within the language make the program '

morc readable. In addition, whether the programmer is able to understand such features. _f

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Modeling ability is rclated to whether all features within the language is able to
express the meaning of the program, and how easy it is to model all problems precisely

and casily?

Simplicily is related to whether the language design is as a hole simple, unified, and

general, or it is full of special-purpose features.

Lastly, semantic clarity 1s related to whether every legal program and expression

have one defined, unambiguous meaning.
All the above and more design goals have been taken into account in designing

classical HLLs. Ilowever, Hi.Ls will nced more design goals and challenges that will be

discusscd shortly.

2.2.3 New Challenges for HLL:

The design of HLL faces multiplc challenges for new application area, in this section

such challenges are discussed.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2.2.3.1 New architectures

Despite the fact that Flynn outlined in 1966 (George, 1987) four classes for the
organization of high-spced computers, only this decade wilness an accclerated
development of programming languages for such architectures. Thus, programming

language design {or such architectures were developing slowly, that is because the cost

of such machines is high and it is not widely available. As the wide spreading of

nciworks, altempts was made so that the function of all machines within one network
looks like one parallel virtual machine (PVM architecture) (Al Geist, 1994). Multiple

languages was designed for that purpose like Orea (Henri, 1994).

2.2.3.2 Standards and Portability:

Although all programming language implementers claim standardization, different
implementations do exist. For example, MS-Pascal, Turbo-Pascal and IBM-Pascal arc
different implementation for Pascal programming language but none of them

implements standard Pascal. Each has its own featurcs.

Duc to the very high growing rate for use of networks, standards have become even
more important feature for every tool that has to be used over the network, including
programming languages and communication protocols. Such importance realization was
the creation of Java programming languages and the-adoption of TCP/IP (Fred, 1996)

network protocol for Internet. Another method used for standardization of distribution

of objects reusability was the adoption of CORBA and DCOM standards.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2.2.3.3 Nenvork Models:

Despite that, all exiting network models have approximately the same objectives
(connccting computers together) they are dislike. Such-models differ on the roll of each
node within the network, code and data residency, computation location and level of
transparency {or code and data migration. When network was first introduced, data was
the first clement to migrate from one environment to the other, so data transfer
mechanism must be maintained. Now both data and code can migrate {rom onc node o
the other. And in a newly designed networks, even the network binders tike routers and
switches can be programmed using some programming languages like PLAN (Michaci,

1998), such designs creates {wo types of networks, named active and passive networks.

Programming languages must have new features Lo support such the need to create a
connection with other nodes over the nctwork, and (o send and receive both code and

dala.
2.2.3.4 New Applications:

Internet can be classified as the most important information cxplosion method 1n this
decade, and for its last web spread. New applications appeared, such as e-commerce, ¢-

business, data mining, search engines and Intranct applications, ... ctc.

New programming features for database operations had to be added, like starting a

client transaction and searching a database server.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2.2.3.5 Security:

Despite that, safcty for long time has been one of the main design goals for HLLs.
Sccurity has long time been dropped of such design goals. That is because programs and

data arc supposed to be on one physically sccure machine.

" Today the story has changed, and security model has to be added to the programming
language design goals, sccurity conslructs must be added specially for programming
languages designed for nctwork computation. Such features like data verification and

user authentication,

Java, for example, added some security features that will prevent the program from
alfecting the execution environment or the internal state for the machine that is running
on. ‘This is accomplished by the introduction of sandbox opcration model and byte code
verification (Robert, 1998)(Jonathan, 1999). PLAN used authentication and

authorization (Mechael, 1999).

Some new exccution eavironments that emulate paraliel computer over a network
needs sceurily measurements. While parallel programming languages in general do not

need seeurity support since the program will run on onc physical machine.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2.3 Network Computation

Network computation is characterized by how to make computation over the
nclwurk.-ln this section, some aticmpts for.classiﬁcations arc discussed to show that
such classification lacks new classification. We will also discuss network computation
languages that are available today and some excculion environments for network

computation with middic-ticrs for network computations.
2.3.1 Network computation classifications:

Several atlempts for classification of computation models was down by many

researchers. Each attempt was modeled for specific type of application (Kristian,

1996)(Antonio et al, 1996).

Kristian Paul classification {1996): Kristian classjﬁcs computation modcls to be
cither centralized or distributed. Distributed model is divided into threc classes
workstation modcl, Xterminal-Server model and processor pool model.

4520440

Antonio et al classification (1996): proposed A new classification for modeling
mobile code paradigms which he named Client / Server (C/S), Remote Evaluation
(RI<V), Code on Demand (CODY and Mobile Agent (MA). Me also classified the mobile

languages into two categories: strong mobilc languages or weak mobile languages.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

i2

The strong mobile languages allow execution unites {EU) 1o be move with its
internal state to a different site, like Telescript. The weak mobile languages allow EU to

be bounded dynamically to code coming from different siics, like Java.
2.3.2 Programming Languages for network computation

In this section, a look on some network computation programming languages is

conducted, describing the design goal and main features.

2321 Java:

Java (Jlames, 1996)(Sun, 1995) is a gencral-purpose, concurrent (muiti-threaded).
class-bascd, objcct-oriented language. Tt is designed to be simple cnough that many
programmers can achieve fluency in the language design. Goals of Java are to provide

portability and robustness.

The Java is related to C and C++ but is organized rather differently. With a number
of aspects of C and C++ omitted like multiple inheritance and pointer operations, few

ideas from other languages were included like raising signals and catching exceptions.

The Javais intended 1o be a production language not a tescarch language. The design of

Java hos avoided including new and untested featufes. The Java is strongly typed
language. Type checking is done on compile time and execution time. The Java does
not include any unsafe constructs, such as array accesses without index checking, since
such unsafe constructs would cause a program to behave in an unspecified way. Java is

normally compiled to a byte code instruction set and binary format.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

The Java was designed with network computation model in mind. It uses some API
to cstablish network communication. It has remote method invocation (RMI)
capabilities (Elliotte, 1997). The RMI offers some of the critical elements of a

distributed object system, and it is analogous to CORBA and DCOM.

2322 PLAN:

Programming language for active network (PLAN) (Pankaj,1999) is a new netwaork
programming language for programmable networks. These programs replace the packet

beaders (which can be viewed as very rudimentary programs) uscd in cutrent networks

(Pankaj, 1999).

‘The PLAN programs are lightweight and of restricted functionality. These limitations
are mitigated by allowing the PLAN codc to call node-resident service routines written
in other, more powetful languages. This m;o-lcvcl architccture, in which the PLAN
serves as a scripling or “glue' language for more general services, is the primary feature

of this language.

The PLAN is bascd on the simply typed fambda calculus, and providcs a restricted
set of primitves and data types. The PLAN delines a special construct called a chunk
uscd to describe the remote execution of the PLAN programs on other nedes.

Primitive operations on chunks are used to provide basic data transport in the

network and to support layering of protocols. Remote execution can make debugging

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14

difticult, so PLAN provides strong static guarantees to the programmer, such as type

salcty.

A more novel property aimed at prolecting network availability is a guarantee that

PLAN programs use a bounded amount of network resources.

2.3.2.3 Telescript :

o

Telescript (Peler,1996) is an interpreted, dynamic, object-oricnted programming
language for writing mobile agents. A Telescript "program,” or script, consists of a
collection of classes. Classcs are hicrarchically organized by sub-classing. Classes have

features that are their externally observable operations and attributes.

[‘caturcs may be public or private. In contrast to the object models in some other
languages, the Teleseript's private features are visible in sub-classes as well as in the
base class. Features, or entire classcs, can be scated so that they cannot be overridden in
sub-classes or sub-classed, respectively. Telescript does not permil incompatiblc

signatures (feature overloading) in sub-classes.

The Telescript language reference specifics a number of predefined classes. These

must be supporied tn every implementation ol a Teleseript interpreter, or engine,

Objects are always instances of some class, and always inherit from the class Object,
which is at the top of the object hierarchy. An object encapsulates its properties,

specified by the class and direcily accessible only to code "inside™ the object (and not to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

15

sub-classes). Properties reference other objects. Agents and places are also objects,

instances of various sub-classes of the predefined abstract class Process.

Process objects provide Telescipt's multi-tasking functionality. Processes are pre-
emptively multi-tasked, and scheduled according to priotily. Process classes have a live
operation whicl: is invoked directly by the engine, on a new thread of control, to

animate new process objects.

All objects must be owned by at most one process. Objects that are not owned arc
subject to being garbage collected. A process "owns" itsclf. A process can transfer
ownership of an object to another process, provided it owns the object and all objects
referenced by that object's properties, and, recursively, all objects referenced by objects

in that object's closure,

The Agent class, a sub-class of Process class, ‘provicles the scaled, private go
operation. An agent can request the go operation on itsclf, providing a ticket argument.
The ticket object describes the place where the agent is trying to go, with varying levels
of specificity. If the engine can figure out where and how to route the agent, and the trip
is ulumately successful, the agent "wakes up" exccuting its next {ine of code in the

destination place.

Agent processes always execute in the context of onc or more enclosing place
processes. Places usually provide a service API for agents to interact with. Places can be
nested within other places, and cvery engine has an engine place as its outermost place,

As one of the last steps in processing an agent's go, the destination engine requests the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

16

entering operation on the destination place to give that place the opportunity to deny

occupancy. If no place satisfying the ticket will admit the agent, the trip fails with a trip

cxeeption.

2.3.3 Execution Environment for network computations.

2.3.3.1 PVM.:

Paratlel virtual machine (PVM) (Al Geist, 1996) is a result of trying to usc the
computation power of all computers within a network framework. It was designed to
permits a heterogeneous collection of Unix computers networked to be viewed by a

uscl's program: as a single parallel computer.

PVM is the mainstay of the Heterogencous Network Computing research project, a
collaborative venture between QOak Ridge National Laboratory, the University of

Tennessee, Lmory University, and Carnegic Mcllon University (Al Geist, 1996).

The PVM system has evolved in the past several years into a viable technology. It is
uscd for distributed and parallel processing in a variety of disciplines. PVM supports a

straight forward but functionally complete mcessage-passing modct.

PVM is designed to link computing resources and provide users with a parallel
platform for running their computer applications. Frrespective of the number of different

computers, their usc and where the computers are [ocated. It is capable of harnessing the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

7

combined resources of typically heterogeneous networked computing platforms to

deliver high tevels of performance and functionality.

Programs written in C, C++ or FORTRAN arc provided access to PVM using calls to
PVM library routines for functions such as process initiation, message transmission and

rceeption and synchronization,

Major [catures of PVM are portability, heterogencous, scalable, dynamic
configuration, fault tolerance, dynamic process groups, signals, multiple message

buffers, tracing and customized.
2.3.3.2 MAP:

Mobile agent platform (MAP) (G. Adorni, 1993) is a platform for the development
and the management of mobile agents that gives all the primitives needed for their

crealion, exceution, communication and migration.

A node belonging to the platform MAP consists of an object called server that
contains, all the entitics needed for the operation of the platform itsclf. In the host there

can be more than once server,

Server is the main object of a MAP server, in which the entitics Daemon can Context
and local agents are instanced. Its activation cnablcs the node to accept and have agents

coming {rom the network run. .

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

18

Dacmon is the entity of the MAP that listens on a certain port, waiting for agents
coming [rom other nodes and for messages to be liveried to local agents.
Context is one of the basic objects in a MAP server. In fact, it knows all the agents

present on the server.

Network Class Loader is used for enabling the agents to run on a specific MAP

server, even when their class is not present there.

Code Server is an internal entity of the Context, dynamically created. In fact, the
Context of a platform instances a new object Code Server each time it is requested a

class by a nctwork Class Loader.

The most important feature of the MAP platfﬁrm is the possibility to make an agent
migratc or to scnd messages through the network even to servers who‘sc classes to
which such objects refer are not present. To do this, each-time a specific object reaches
a new scrver, the corresponding Dacmon load a new Instancer object with a Network
Class Loader that deals with the loading of such classes. If they are not available
locally, the Network Class Loader interrogates the Code Server of the some remote sites
saved on an appropriate vector, scarching for the classcs required. I it finds them, they

arc loaded from the remote site and saved in the local table of classes.

MAT environment implementation was written fully in Java, and that is because Java

supports object-oricnted, mullithreaded language and for its portability feature.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

19

2.3.4 Middle-fiers for network computations

To simplify nctwork programming, the RPC was introduced by Birrcll and Nelson

(1984). To realize component-bascd software architecture, two distributed object
models have cmerged as standards namely, CORBA and DCOM (Chung, 1997). In the

following three sub sections, we will present a short description for each.

2341 RPC:

Remolte procedure call (RPC) (Tanenbaum, 1995) is an older modc] than both
CORBA and DCOM. While CORBA and DCOM create objects remotely, the RPC is a

method that allows programs 1o call procedures located on other machines.

RPC achicves transparency by using both client and a server stubs. Clicot stub
[unction is Lo pack parameters into a message and asks the kernel 1o send it to the server
stub. At the server stub, the stub unpacks the parameter and calls the server procedure.
After the end of the procedure, the server stub packs the return results and sends the
message to the kernel to deliver it to the client stub. At the client stub, the result is

unpacked and the program continues to execute,

This model was cfficient for none object-oriented methodology. Today. object-
oricnted paradigm is scen as the key to a successful semantic clear computation. For
that, RPC is no more the key to a successful computation. New models has been

proposed cailed CORBA and DCOM, which will be discussed in the following two sub-

seclions.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

20

2.34.2 CORBA:

Component Object Request Broker Architecture (CORBA) (Chung, 1997) is a
distributed object framework proposed by a consortium of many companies called

Object Management Group (OMG).

The core of CORBA architecture is the Object Request Broker (ORB) that acts as the

object bus over which objects transparcntly interact with other objects [ocated locally or

remolely.

A CORBA object is represented to the outside world by an interface and a set of
methods. A particular instance of an object is identified by an object reference. The
clicnt of a CORBA object acquires its object refercnce and uses it as a handie to make

method calls, as if the object is located in the client’s address spacc.

The CORBA framework for distributing objects consists of the following clements:

ORB, IDL, DII and 110P.

The IDL ts an Interface Definition Language for defining static interface, DII is
Dynamic Invocation Interface which let clicnts access objects. And [1OP is Internet

Inter-ORB Protocol. A binary protocol for communicalion between QR Bs.

The CORBA is a promising technology that is seen as the future computation model

that enables application to communicate and share objects.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

21

Despite that, CORBA is a more generic specification for distributed object
technology. Microsoft implemented a different model named DCOM that will be

discussed in the following scction.

2.3.43 DCOM.

Distributed Component Object Model (DCOM) (Chung 1997) is al distributed
cxlension to Microsoft component object model (COM) that build an object remote
procedure call (ORPC) layer on top of RPC to support remote objeets. A COM server
can create object instances of multiple object classes. A COM object can support

multiple inter{aces each representing a different view or behavior of the object.

An interface consists of a set of functionally related mcthods. A COM client interacts
with COM objeets by acquiring a pointer 1o one of the objeet’s interfaces and invoking

mecthods through that pointer, as if the object [ollows a standard memory layoul.

2.4 Summary:

The HLL designed goals has changed during the past {orty years, new challenges
cmerged such as new archileclures and conligurations, portability and the need for

standard, new emerged network models, new applications and security.

Network computation model relies on how to do computation over the network. Two

classifications were discussed.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

22

Some programming languages for network computation were also studied, like Java,
PLAN and Telescript. Two-execution environments were discussed PVM and MAP.

Some middle tier paradigm has been studied like RPC, CORBA and DCOM.

2.5 conclusion

Multiple methods emerged to address the new challenges for HLL, such as designing
new languages, introducing new exccution environments with fibrary routines cxtension
and using middle-tier paradigms. None of them addresses thc problem of using classical
legacy HLL programs with the network environment. We suggest extending the HLL
capabilities for network computation by designing new execution environment. It
should be transparent to both the user and the HLL program. That is to say, the HLL

program should execute correctly in the new cnvironment without changing its

scmantic.

[n an attempt to classify all network computation methodologies studicd, we found
some classifications that lack’s some models. Such classification will be discussed in

the following chapter,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23

Chapter 3

New NCM Classification (CDP-Classification)

3.1 Introduction

Scveral attempts for classification of computation models using existing paradigms
has been conducted by may researchers. In this chapter, two attempts by Kristian and
Antonio et al will be discussed. The discussion will focus on limitation of each to fulfil]

a

the complete classification, and conclude with a new classification.

3.2 Kristian classification

Kristian (1996) in his thesis classifies models of computation to be either
centralized system model or distributed system model. The distributed system model

can be workstation model, Xterminal-Server Model and Processor peol model.
The centralized system model consists of a st of terminals connected to a single
central computer. The central computer is typically a timesharing system which

switches frequently between processes to provide a sharc of the system resources.

The distributed system mode! is directed by two technological advances: the

evolution of cheap powerful CPUs and the advent of high speed networks.

The following is Kristian classiftcation for distributed system computing:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

24

/-Work station model: The workstation model is a group of personal

workstations, connccted by a high-speed network

2- Xterminal-Server-Model: Xterminal-Server Model is a hybrid of the workstation

and timesharing models.

3-Processor Pool: Processor pool model is another form of distributed systcm

devcloped to exploit the availability of small cheap microprocessors.

Kristian classification is based on the topology for distributed computing. Tt is
dirccted by the current computation technology. Such model is weak to describe the

network computation models, since it is dirceted by the distributed system computing

point of view.

3.3 Antonio et al. classification:

A more general classification using mobile agent paradigm was discussed by
Antonto et al. (1996). Their model classifics mc;bil(: code paradigms based on
interactions patlerns that define the coordination and relocation of components needed
to perform a service. Their classification is based on the following abstraclions:
components thal can be either resource components or computational components,

Interactions and Sites.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

25

Resource component cmbodies architecture elements representing passive data or
physical devices, like file, a network device driver, or a printer driver. A particular kind

of resource 1s represented by code components that contain the know-how.

Computational components embody a flow of control, an example is a process, or a

thread. They arc characterized by a state of their execution.

Interactions arc cvents that involve two or more components. The sites arc
exceulion environments; they host components and provide support for the exccution ol

computational components.

In their classification, they suggestied that there are three main design paradigms
that extend the well-known client-server paradigm; remote evaluation (REV), code on
demand “(COD) and inobile agent (MA). They distinguish the design paradigms
according to the location of the different companents before and after the execution of

the service. Scc Table (1)

In Client/Server paradigm, a computational component B (the server) offers a sct of
services that is placed on sile Sb. Resources and know-how are hosted bye sitc Sb, The
client component A located on Sile Sa, requests the execution ol a service with an
mleraction with the server component B. As a response, I3 performs the service
requested by exceution the corresponding know-how and accessing the involved
resource. M result is needed it will be sent back. For short client’s viewpoint that the

server owns all necessary data and knowledge.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

26

In Remote Evaluation’ paradigm, a component A has the know-how neccssary to
perform the service but it lacks the required resources. Which happed to be located at a
remole site Sb. Conscquently, A sends the service-Know-how to a computational
component B (Called executor) locate at the remote site that, in turn, exceutes the code

using the resources available there,

In Code on Demand paradigm, component A is alrcady able to access the resources
it needs, which are co-located with it within Sa. However, no information about how to
process such resources is available at S1. Thus, A intcracts with a component B
contained in 8b by requesting the service know-how, which is in Sb as well. A sccond

intcraction takes place when B delivers the know-how to A, which can subsequently

exccute it.

[n Mobile Agent paradigm, the service know-how is owned by A, which is initially
hosted by Sa, but some of the required resources are located on Sb. Hence. A migrates
to Sb carrying the know-how and possibly some intermediate results with itself, After it
has moved to Sb, A completes the service using the resources available there. The

following table summarizes their classification:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

27

Table (1): Antonio et al. Classification for mobiie code paradigm

Paradigm Before After
Sa Sb Sa Sb
Clienl/Secr A Know- A Know-
ver (C/S}) How How
Resource Resource
B B
Remote Know- Resource A Know-
Evaluation How B How
(REV) A Resource
B
Code on Resource Know- Resource B
Demand A How Know-
(COD) B How
A
Mobtle Know- Some - Know-
Agent (MA) How Resource How
A Resoutce
A

As we can sce, their classification is based on mainly two elements computational

component and resource components, which feads to four classifications.

3.4 Suggested computation model classification (CDP-Classification)

Antonio ct al classification seams closer to the model of network computation than
Kristtan, but it can not fully reflect all computational mode!s, That is because resources
never move, in real life, data resource can migrate, especially in database applications.

Therefore, we necd a new more general classification,

After adeep study and analysis of computation components we decided to divide it
to its basic elements: code, data and processing. Then we suggested that any element

within a network could be founded locally or remotely. We also assumed that all

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

28

elements of resources must be available to the computation before it starts, that summed

to eight compultational model classes. As shown in table (2).

{-Centralized Computational class (CC) is when all computational elements arc
located locally, No need to use network to migrate resources. It is the oldest

computational model of HLL.

2-Data Fetch on Demand class (DODY) is when all computational elements reside
locally except data that s fetched from remote site on demand. Database inquiry is an

example for such model.

3- Code on Demand class (COD) is when all computational elements reside
locally except the code that is fetched on demand from the remote site, HTML and Java

scripts are good examples for that.

4-Object on Demand class (QOD) is when objects (code and data) reside on
remote machine and cxccution will be carried locally, Java applets with Java database

conncctivity JDBC,

3-Remote Object ELxecution class (ROE) is when objects are transmitted to be
remolely exceuted, mobile agent in a way or another can be scen as an example, we will

discuss mobile agents in more details shortly.

-Remote Code Execution class (RCE) is when the code will be transferred to be

executed on remote machine, our model of implantation is one example.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29

7-Remote Data Processing class (RDP) 1s when data is sent to remote machine to
be processed there. Database applications that resides on servers that collect data to be

processed later is a good example for that.

§-Client/Server class (C/S) is when the remote machine has ail the computation

elements and provides services to clients; RPC is one good example for that.

Table (2): CDP-Classification

Code Data Processing Modcl Name

LLocal ~ Local Local Centralized Computation model (CC)
Local Remote Local Data Fetch on Demand (DOD)
Remote Local Local Code on Demand (COD)

Remeote Remote Local Objcct on Demand (OOD)

Local Local Remote Remote Object Execution, (ROE)
Local Remote Remote Remote Code Execution (RCE)
Remote Local Remole Remote Data Processing (RDP)
Remote Remote Remote Client/Server (C/S)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

30

3.5 Antonio et al. Mobile code paradigm and our classification

.;

Despite that our CM classification appears not to classify mobtle agent paradigm, it
can easily classify such paradigm. As Antonio et al (1 996) states mobile code paradigm.
‘The computation as a hole initially staris locally, on a certain point, all the computation
with its internal state and temporary results is transferred to remote node to continuc
cxccution. So any migration of code from node to node can be seen as a mobile code
paradigm. In addition, from our classification we sce that their classification for their

paradigms can be found in our classifications; C/S, RCE, COD and ROE respectively,

3.6 Conclusion

Kristian and Antonio ¢t al. Classification is not suitable to classify network
computation models. The suggested model for network computation we think is
complete. the complete eight classification 1s named CDP-Classification while the last
seven elements is named nctwork computation model NCM-Classification. Such
classification as of our opinion can classify all existing computation models, including

the new emerging mobile code paradigm.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

3

Chapter 4

Implantation Model

The classical computation model of HLL is based on the following:

- The semantics of HLL: the semantic is defined in terms of operations and data
structure of a virtual machine (VM). The compilation process of HLL is then
reduced to mapping of a program written in these languages into cquivalent ones
in the machince language of the VM.

- VM of compiled HLL: it is the hardware interpreter of actual machine and hence
its machine language is thc actual machine language. A VM of interpreted

language is a software-simulated machine and hence a machine language might

have any form.

Both implementation models of HLL are platform dependent and require both data

and code 1o reside on the same machine where the code is exccuted.

Actual machines are no more isolated. They are connected within networks. For this
reason, code and data can reside on any node within the network and they can be
moved while the program is excculed. A rescarch cffort for language designers is
dirccled towards assuming that the code and data can rcsidc. on any node within the

nelwork.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

32

4.1 Known efforts to make use of NC models in HLLs

An atiempt for extending HLL for nctwork support was by adding some
communication libraries for existing languages such as C/C++ with WinSock Library
(Arthur, 1995). Although same syntax and semantic are preserved for HLL, ones have
to lcarn how to use such libraries. It is difficuit some times to express fully the model
required, and some times, it is impossible to express such models. For example, you
can not express mobile code in C wilh network routines, C is not a bytc code

compatible with different platforms.

Another attempt was by modifying existing HLL to reflect some specific models of
computation like parallel programming (Russian, 1997). In this approach, not all
constructs within the language are new 1o the user, il is more attractive, and it is easy
to learn. A successful example is pC++and CC++ (Doreen, 1993). Again, the hosting
languape semantic has to change to reftect the nc;w model. Thus, programmers will
sec conflicts in having the same syntax but defcrent semantics. More over such
languages have some limitations for modeling capabilities. Therefore, the solution of
such problem can be either by inttoduction of new programming languages or new

transparent execution environment.

New programming languages like fava (James, 1996) and PLAN (Michael, 1998)
have new syntax and scmantics that dircctly reflect the network computation model.
Such languages are casy to use by expericnce user. It can casily express the model

that was designed for. However, a new language must be learned, which is not an

alltraclive idcea.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

33

While new progrémming languages is the solutioin for new requirements, legacy HLL
programs can not Bcncﬁt from such languages. New transparent execution
environment is secen as the soiution. Network execution environment is the solution
for extending legacy HLL programs to make use of network computation paradigm

without changing the HLL semantic.

4.2 HLL and nefwork computation

Exiting legacy systems and HLL has been for long in the market, they lack the
capability of using nelworks during computation. We think that networks can give
more power to such languages. Exccuting such programs within the network can
utilize the nctwork resources, such as processor power. It. can incrcase the availability
and use of such HLL. Our main objective is to enable classical legacy HLL programs

to be adapted to networking environment during their execution.

We do nol mean for sure to allow such programs to run in parallcl on deferent
machines. That is because such applications were not designed for such a paradigm,
and for that it necd a lot of automatic code analysis, before code fragmentation can be
donc. We mcan that the HLL is imp]at?lcd all over the network within a framework of

network computation nodes (NCN).

So what is the Implantation model? Why it is proposed? and how HLL programs

can make usc of it? In the following section, the mode! will be discussed.

~All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

34

4.3 Implantation Model

The suggested model js based on basic idca of the so called Implantation, which
means migrating the compiled code of HLL from the machine for which it is
originally gencrated into another machine having the same execution environment of
HLL. This migration process acts as planting the HLL on different network
computation nodes. Permitting the programs written in HLL to be compiled and
loaded in one machine (nodc), and then 1o be migrated as a whole or as execution

units into another node(s).

Bascd on this idea, a suggested model, which will work in a nctwork, consists of a sct
of nctwork computation nodes. In each node, there are two types of network
computation modulcs, named network computation server (NCs) and network

computation clicnt (NCc).

The function of the NCe is to exceute the program and on a specific point (EU call).
The EU will be transferred to any available NCs, remotely located on another NCN,
The EU will be executed there and returning the results back then the program can

continue execulion.

Al Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

35

4.3.1 Basic Concepts

Implantation environment consists of a set of nodes called netW(‘)rk computation
nodes. In each node, therc are two types of network computation modules, named
nelwork computation server (NCs) and network computation client (NCc). The two
modutes are completely isolated, so the node can be doing some network computation

for some other nodes and at the same time asking other nodes to do computation with.

in this section every clement of the implantation model is discussed, network
computation node, network computation server, network computation client and

network compulation regisiry.
4.3.2 Network computation node (NCN)

Network computation node is the core node for implantation model. It is the exceution
enviromment in which programs runs. It consists of two modules named network
computation client (NCc) and network computation server (NCs). The set of network
computation nodes within one location is called network computation network

(NCNect). Sec fig (2).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36

| Nch

Fig (2): Network Computation Network (NCNet).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

37

1S00e@ S1Say L JO e - Ueplor JO AYSBAIUN JO Akeid!T - paARSSY SIYDIY ||V
\ i

NCr

A
_ @ o :
1 T .

1 = Q &
1 r C .ﬂ 1
i = {

! | | =
) H V 1
1 . m !
_ S | I S N
e.A o ; 1
! _m“ _e_Al_ !
“ __ K- A ! | & : :
1 . m_ o P m 1 = _
" __ _|_“wiJ _m_ : > _mA.".ﬂn) : :
" y — _ﬁ | 5 gl ha 8 Y
t I) ! ; TS s .
_. _ﬂ ! m_ | ™ 8 b5 5 I 2 & oo |
: | L B m.]val > = - Y.EmAYMmT
i i m o o 0 P oo @ © !
.S T R e e < = 5 “.mM =
i i i = £ i !
_ Lo 3] £ m &2 '
M N s T e 8 S S :
A E_ 7 o .
; Bt 4 :
7 _
|| m _U !

-

Lt

Fig (3): NCs , NCec components and NCr relationship.

38

Wait for
Connection

Conneciion
Request?

Delete Thread
—k
[P y__
Marshal Restlis Start immplaniation
Process
A
No— e o - -
Y
Finish
e X 0S. Execule Code

Execution?

Reguest Data
from NCe

Wail for Data

Yes

Fig(4): NCs exccution flowchart

"All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

X
execute ‘Walt for Data
Request from NCs
cali proc? D>-No—— Reguest

Arrived?

Yes

Yes
allowed No .- Fotch Data and
remotty? marshal

Yes

Yes

0y
implantation
Process

Wai for
Result

Result
No. Xes
PR continue

Fig (5): NCc execution flowchart

'All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

4.3.2.1 Network computation server (NCs)

Network computation scrver is the main execution environment for the implanted
code. It consists of a virtual machine, server implantcr, communication manager and

data manager, sce Fig 3. Where:

1} Virtual Machine: is the execution environment in which the implanted code of
HLL will be executed, It communicates with the execution manager, the server

implanter and the data manager.

2) Server [Implanter: its function is to implant the code into the server virtual

machine VM, After the implantation is finished it informs the execution manager,

3) Communication manager: is responsible for establishing the connections with the
NCc and maintaining a communication channel with that node for message

transfer during all execution time,

4} Data manager 1s responsible for feiching the data from the implanter node, when
the VM asks for. It contains a result manager that will marshal the result to the

implanter node (NCc)

5) Lxecution manager: is responsible for organization of all server components

functions.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

4]

4.3.2.2 Network computation client (NCc).

Network computation client is the node responsible to initiate the implantation
process. It consists of implanter, a virtual machine, communication manager, data

manager and exccution unit lookup table. See Fig 3. Where:
1) Virtual Machine: is the execution environment of the HLL local code.

2) Implanter: is the manager of implantation and responsible for transferring the

code 1o the remote node,

3) Communication manager: (s responsible for establishing the connections with
other NCNs and matntaining a communication channel with that node for message
transfer during alt execution time. It uses the address that returns from the NCr., If
a universal resource locator URL is used then it will be resolved for its Internet

protoco! address 1P using distributed name scrver DNS,

4) Data manager is responsible for sending the data that,is requested by the NCs,

5} lxecution Unit Lookup Table (EULT): A table within cach NCe that is filled with
information about which LEUs are allowed to execute remotely. The table can be
filled cither cxplicitly or implicitly: cxplicit filling is controlled by uscr

intervention, while implicit filling is a result of automatic code analysis.

6) Execution Manager: is the organizer between all other components.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

42

4.3.3 Network computation registry (NCr)

Network computation registry is responsible for providing other NCNs with
information about what NCNs are within the NCNet. It is a server which is selected
within the NCNet to hold an entry for each created NCs, this registry is asked by each
NCc for the availability of nodes to do network computation with. This is done to

minmmize allocation time for available NCs.

Each newly created node within the network must register its URL or lI’. address
within the registry. To find the computation power for each NCN, it is suggested that
the NCr will do a small computation with that node to find the exccution time and
communication time, these information is stored in a table. Based on this table nodes

can be casily selected for its computation power.
4.3.4 Network exccution environment of HLL and exccution scenario

The model works as follows, see Figures 2,3,4 and 5. First, HLL program will be
tmplanted (loaded) in NCc's VM, then EU lookup table (EULT) is filled by the user
wilth the allowed EU to be remotely exccuted, by default all EU are allowed to be

remotely exeeuted. Then execution is instructed by the remote exccution manager

within NCe,

The program will execute until it calls an EU, at that time execution unit in VM

informs the remotc execution manager that a call for an EU is encounter. The remote

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

exccution manager looks up into the EULT to see if the EU is allowed to be remotely
cxccuted. If not, the remote execution manager instruct the virtual machine to
continue local execution. Otherwise, A call to network computation registry NCr is
done 1o look for available network computation servers NCs to do computation with.
If no nodes are available, then execution will continue Iécally, otherwise an available
node address is sent back by the registry and the implantation process of the EU is

started. Local execution will suspend.

Alter the end of implantation, the NCs starts executing the implanted code using its
VM. II' any data is nceded, cxecution will suspend and a message is sent to NCc 1o
send the desired data. Afier the arrival of data, execution is continued. At Hlé end of
excculton of the unplanted code, the NCs marshals back the result. When the result

arrives 10 the local node (NCe) the execution is continued localy.

4.3.5 FFault Tolerance

Every time the NCc asks anode to do computation, it starts a tiie-out counter, if it
expires before the NCs return the result then it starts another implantation with other

nodc. 1{ no nodes are available then local execution will continue.

Deadlock is not o happen regarding our model, and that is because at a cerlain ime
no two nodes arc doing computation for the same HLL program. Resource race
conditions may appear between different FILL programs. Time-out counter is used

which also prevents deadlock.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

44

The Implantation model has the feature that all needed resources are available locally
and prior to computation. Other nodes are needed if they are available and have more

power than local node.
4.4 Comparison betwcen Implantation and RPC

I[f we assumc that the implanted EU is on the server before a call was made then the
calling process will look like RPC. That is why we compared the two paradigms. We
will look at similaritics and differences between the (wo models, its application,
[allure reststance, Joad balancing, platform depc—indcncy, called procedure

implementation dependency and, language dependency. See table (3).

RPC is a language independent, that is to say, you can call a remote procedure written
in another language, while Implantation will implant the procedure of the current
program Lo remote node before exceution. The code that is implanted is language

dependent.

RPC and Implantation are platform independent. The Implantation model depends on
virtual machinc implementation. The RPC is a specification that co-cxists on multiple

platforms, in spitc that RPC has to do some data conversion between platforms.

Implantation has Lhe disadvantage of more message sizes. The length of messages is
code dependent, whereas the RPC messages is for procedure cail and results returned.

The Implantation has a communication overhead over RPC.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

The RPC employs static load balancing. That is to say, procedurcs are -place in
advance and prior to calling on specific remote nodes (servers) and hence the call is
made even i the server is overloaded. The Implantation has the capability to implant
the code to any available NCN within the NCNet at run time, and hence it can decide

before implanting if the server is overloaded to chose another server.

The RPC Ihas difficulty in its semantic in the presence of failures. That is when the
client is unable to locate the server, the request to server is lost, the replay is lost, the
server crash after receiving the request and the client crashes afier sending the request,
For a comprchensive study see (Tanenbaum, 1996). In most cases, the problem is that
the computation is not available locally so computation will not continue until a
requested scrver is recovered. This problem is not found in the Implantation, since the
code ol the procedures is locally available. If a requested server crashes, a time-out is
encountered and an alternative onc is selected, if no one is available, the computation

can continue locally.

The RPC depends on the implementation version for the procedure on the host, while

The Implantation is not dependent on any implementation over the network.

Finally, the domain of application for the RPC is modern network computation
languages, while the implantation is designed lor legacy systems and HLLs. Below
table 3 presents a summary for comparison features of the RPC and the Implantation

models

~All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

46

Table (3): Comparison between RPC and Implantation

Feature RPC Implantation
Language Independent Ycs No
Platform Jndependent Ycs Yes

Called Procedure Yes No
implementation dependent
Communication overhead No Yes
l.oad Balancing Static Dynamic

Fault Tolerance

No, failure of Remote Node
stops execution, il no other
node has the
implementation of the
procedure.

Yecs, failure of remote node
does not stop execution. In
addition, the only halt is
when the local node halts.

Domain of application

Modern NC languages

Legacy HL Ls (application)

4.5 Implementation considerations

When thinking in implemcenting Tmplantation, onc must decide on multiple issucs,

such as the implementation language for the model and method of transferring data

between nodes. Should the network compultation nodes best be threaded? What is the

best method of allocation and sclecting the network computation node to do

computation with? Is it a proper idea to do automatic code analysis for procedures that

will be allowed to be remotely executed?

In sclecting implementation language, we think it is better to select a language which

has ncw features, like object oriented, network programming, portability, supports

multi-threading, and can casily facilitate different computation models.

There are multiple methods of selecting and allocating of network computation nodes

within the NCNet. All have one of the following design decisions; deterministic

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

47

versus - heuristic, centralized versus distributed, optimal versus sub-optimal, local
versus global and sender-initiated versus receiver-initiated algorithms. For a

comprehensive study see (Tanenbaum, 1996). In our model we think centralized is the

best for small NCNet.

Multiple methods for automatic code analysis for data dependency can be uscd. Most
of them rely on generating dependency graph for basic blocks. Such dependency can
be classified as output dependency, true dependency and anti-dependency (Reinhard,
1995). Code analysis can be done in two ways: dynamic (exccution profiler) and
Static (code analysis). Muitiple tools are available to assists in such decisions.
Automatic code analysis is costly in term of time that is why we think it is not feasiblc

to implement,

4.6 Conclusion

We believe that the Implantation can make use of new network computation power
available today for HLLs. That is becausc it does not change the semantic of the HLL

programs. [t has a failurc recovery mechanism that is better than RPC.

Somc drawbacks arc in the modcl, like size of messages between nodes compared 1o
RPC, but most mobile code paradigms today have such a problem, Java applets for
cxample. Also it is a language dependent while RPC is not. RPC is not fully platform

independent (Tancnbaum, 1995)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

48

4.7 Summary

In this chapter, a study of the classical computation model of HLL was conducted.
Such model is based on the assumption that both data and code will reside on the

same machine all over the execution time of the program.

Known cfforts to make use of network computation models in HLLs is discussed.
Three methods were shown; extending language library, modifying existing HLLs

]

and designing ncw HLLs.

Implantation model, the idea, abstract mode] requirements environmeni, and

execution scenario was discussed in details.

A comparison between Implantation and RPC the most related computational modc!
within our classification is conducted. Morcover, we found that Implantation is better
than RPC in some issues like recovery capabilities, resource utilization and on
dynamic load balancing. Most of the drawbacks are related to language dependency

and size of messages.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

49

Chapter 5

Implementation

In our impicmenlation, we did not implement all suggested features for the model, our
main goal was test the idea of Implantation. A compiler for a simplified Pascal
programming language was writien. The output is an assembly language for a stack-
oricnled machine, Such assembly code is implanted into the network computation
node for execution. A stand-alone interpreter and a debugger for program execution

were also written.

We did also tmplement the network computation node server (NCs) but without the
data manager, and assume that the EU will be scll-contained, thal was done to

simplily implementation. The server is named virtual machine server (VMServer).

We also implemented the network computation node client (NCe) also without data
manager, and EULT was assumed to return that each procedure is allowed to be

remotely executed. The client is named remote cxecution manager (RE).

We did not implement the network computation registry (NCr) since its function is to
minimize the sclection time of node to do computation with, so we assumed that local

network computation nede knows where is the network computation node servers.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

50

This chapter is divided into the following sections: section 5.1 discuss the
implementation language, section 5.2 discuss the compiler and the interpreter, section

5.3 discuss network computation server, section 5.4 discuss network computation

client.

5.1 Implementation language

In selecting implementation language, we think that it is best to select a language that
has new [catures like object oriented, network programming, portable, supports multi-

threading, and can casily facilitate different computation modcls.

Object Oriented feature was sclected since it can make reusing of modules easy and
modeling is semantic clear. Network programming f{eature was sclected to hide
network protocol complexity when doing communication, so that our implementation
will be network independent. Portability was selected so that we can extend our model
to the biggest number of computer architecture available in the market today. Finally,
Mului-threading is sclected for utilization of computer computation resources,

especially when implementing the server and network computation registry (NCr)

In spite that several languages has such features, we selected Java since it is one of the

widely used programming language today. [n addition, it proved that our choice was

correct,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

51

5.2 Simple Pascal Compiler, Interpreter and debugger

o

Simple Pascal was designed with the most essential constructs, no pointers, no golo,
no complex types such as scts, no string manipulation, no case statement, no for loop,

only whilc and repeat. For a complete iist of implemented construct, see appendix A.

Simple Pascal compiler, interpreter and debugger was written in C language. C was

used for its cfficiency especially for system programming, and its portability {eature

aver multiple platforms.

The stack machine selected for its simplicity was UGAVAC machine. It is a small
virtuat machine which has stack of size 46KB, a memory of 46KB, three special
purpose registers; program counter PPC, stack pointer SP and frame point& FP, the
ALU performs operation on stack arguments. For implemented instructions for the

machine sce appendix B,

5.3 VMServer: Simplified Network Computation Server

The simplified server is implemented with multi-threaded virtual machine, so it can
server multiple cequests at the same time, When the thread is created it will handle all
future ‘communication with the network computation node that requested the

computation.

Server implanter function is to de-capsulate the implanted code to separate the code

and the result tocation within the code, the byte code will be loaded into the VM and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

52

the result location will be sent to result manager. After the end of execution the
exccution manager is inform, which in its turn informs the result manager to get the

result from the memory of VM and send it to the RE.
The following modules where implemented:

1) Server Implanter: its function is to de-capsulate the code and result location and

implant the code into the virtual machine VM the result location is assumed to be

the first variable defined within the EU.

2) Virtual Machine: is the exccution environment, in which the implanted code of

HLL will be excculed, it is a stack-oriented machine.

3) Communication manager: is responsible for cstablishing the connections with the
RE node and maintaining a communication channcl with that node for message

transfer during all exccution time.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

53

5.3.1 Pseudo code for the VMServer

Do forever {
For each incoming connection request do
Create VMs. Thread that do
Create connection with NCc.
Wait for NCc. to implant code.
Run the implanted code.
Return the result.
Close Connection with NCc.

Stop tread.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

54

A A
Y
NCSF Communication
/ Manager
— SR
| : !
'I Thread Thread
| 5 V.
/ \ _ /— NCS
/ \/ \ u/m\\vf
VA S ™
' Vi Communication | [o '
! Manager - VM Communlcanon
‘ . .. ,,.__[Manager
! v . ““__"'
i
1/ 'mplanter (Implanter]
I . A {(
[{ VM J———- | L i j_“

1 ' \

— J— R

Fig (6): VMSecrver with thleadmg

Alter the connection request from the RE manager node, the VMServer creates a
thread for VM and cstablish a channet between the two. After the communication
channel s cstablished the VMServer communication manager is no more responsible
for message transfer between the RE node and VMServer, communication is managed

by the VM communication manager.

“All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

55

5.4 RE manager: Simplified Network Computation Client (NCe)

RE is responsiblc 1o initiating the implantation process. It consists of implanter, a
virtual machine, communication manager; we assumed that the full program is an EU

that will be exceuted so implantation will be for the all the program, cach element will

be discussed below:

1) Virtual Machine: is the execution environment in which the implanted code will

b cxecuted, It is.a stack oriented machinc.

2) Implanter: is the manager of implantation and responsible for transferring the

encapsulated message of code and location of needed result to the remote NCs.

3) Communication manager: is responsible for establishing the connections with
other NCNs and mainlaining a communication channel with that node for message

transfer during all exccution time.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

56

35.4.1 Pscudo code for RE manager.
While not reached end of execution (Implanted code) do |
Fetch instruction
If instruction is a call to execution unit Do
Make connection with NCs .
Ask server to switch for implant mode.
Implant EU.
Is EU implanted?.
Run EU.
Wait for result,
Close connection with NCs.

Execute instruction.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

57

. T
Byte Code f
.- ‘_...,.J
e oo b
/ H\ VM] Ncc\
H N -
\ A
L ¥ A .
‘ Imptantar l Oulput
Al N . s
i 4
!
A 2 /
REm Communication
Manager
N
v

Fig (7): RE manager

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

58

5.5 Testing and measurcments

We tested our simplificd tools in two environments; over the Internet and within a
local network. Two programs were used; a lighiwcight computation named ptest.p
and a hcavyweight computation name 1000.p. Since we can not control the nctwork
ioad at the time of experiments, we run the test four times, and calculated the average,
in order to isolate the cffect of transient heavy load of the network from the

measurements.

Testing machines

Two machines were used for the test with the following configurations:

1- SUN: Sun Netra i5, 110Midz mictoSPARC Il RISC, 64MB RAM, 16KB I-

cache,8KB D-cache, running Solaris 2.6 and Java |.1.

2- PCI66: Pentium 166MHz, 64MB RAM, 512KB cache running Windows98, and

Java 1.2.1.

3- PC333: Pentium JI 333MHz, 64MB RAM, 128KB cache running Windows 95

Ll

and Java 1.2.1.

The network used is Ethernet running at 10MB/s with network protocol TCP/IP.
The Internet connection speed was 28.8 KB/s.

Testing configurations:

I- SUN: the SUN was used for both the client and the server. A scssion is created for

cach,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

2- PC166: the PC166 was used for both the client and the server. A session is created
for each,

3- PC333: the PC333 was used for both the client and the scrver. A session is created
for cach,

4- SUN-PC166: the SUN was used as a client and the PC166 is used as a server.
Both are connected within a local network.

5- PC166-SUN: the PC166 was uscd as a client and the SUN was used as a server.
Both are connected within a local network.

6- PC333-SUN: the PC333 was uscd as a client and the SUN was usced as a server.

Both were connecled over the [nternet.
Testing programs:
Two programs for testing was used onc is ptest.p (Appendix C) which is a
lightweight computation for calculating the factotial of 6, the other is 1000.p
{Appendix C) which is a hcavyweight computation that loops for ten million times.

Results of tests:

Table (4): results for testing the lightweight program ptest.p

Configurati | SUN PCI166 | SUN- | PCI166- | PC333 | PC333- | PC333-
on/ PC166 | SUN SUN SUN
Test {ar) (DINS)
Number
1 J158 2580 1627 2030 6980 44540 | 37620
2 1000 2700 1629 1870 7690 38170 | 39650
3 988 2630 1641 1760 . | 5820 41690 | 41960
4 992 3290 1584 1870 6530 36090 | 62950
Avcrage 1034.5 | 2800 1620.2 | 1882.5 | 6755 40123 | 45545.5
5

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

60

Table (5): results for testing the heavyweight program 1000.p

Configuration | SUN PCl1066 SUN-PC166 | PC166-SUN
Test Number

1 329972 §2160 91071 310880

2 284943 91350 90863 296700

3 325681 92220 %0049 326090

4 288757 91070 89799 285450
Average 307338.25 | 91700 90445.5 304780

Results analysis: .

As shown in Table 4, the result for running the lightweight program on PC166 is
[aster than on PC333 and that is due to cache and windows version used. We noticed
also that when running the program on SUN, the time it takes decreases every time
approximately, this is due to the cache considerations. The effect of the Internet heavy
load times can be secn on testing measurements in column PC333-SUN (DNS), test
number 4, in which it is far above the average. In addition, we noticed that using the
remole server 1P address for doing the computation is faster than using its URL. That
is because before any message transfer between the client and server the system asked

the DNS for the IT address for the URL given.

Running the program on local slower machine (SUN) is better than using (SUN-
PC166), ie. it is not preferable to use the network to do computation for ligi]lWGight
pragrams. On the contrary, as shown in Table 5, it is better to use the network while
doing computation for heavyweight programs, That is because the server (PC166) is
faster than the local machine and the time cost for communication is neglected

compared to the performance gained.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

61

Chapter 6

Conclusion and future work

6.1 Conclusion

Network computation is a promising area for information technology developers and

uscrs. It can add more power to existing applications and increase availability of

systems [or uscrs.

Existing computation model classification is not satisfactory and for that, we
developed a new classification based on the computation dimensions: code, data and
processing such classification named CDP-Classification.

Existing computation models can not tackle the problem of legacy HLL programs. A
new network computation model based on a combination of remote object cxecution
(ROE), data fetch on clemand_ (DOD) and remote code execution (RCE) of our CDP-
Classification is introduced, developed and tested. Such model is called network

computation model for high level languages (Implantation).

We belicve that the Implantation can make use ol computation power within a
network best, that is because legacy HLIL programs arc implanted into the new
environment without changing its semantic. At the same time, legacy HLL programs
will use the network power transpareat to the uscr, The model is transparent and failure

resistant, unless the original node fails.

All Ri

Library of University of Jordan - Center of Thesis Deposit

hts Reserved -

62

Some drawbacks are in the model, like size of messages between nodes, it is high

compared to RPC, but most mobile code paradigms today have such a problem, Java

applets for example.

Our model of implantation is portable regarding that the imodel does not depend (I)n a
speeific machine design. Any language of implementation can be used, but we think
Java is the best, since it facilitates portability and intcroperability in an easy way. Java
can casily make usc of nctwork programming regardless of the underling network
protocol. That can be scen in the size of implementation code; the Java code for

simplified NCc and NCs for example is around 1000 line.

6.2 Future Work

Implantation as we believe, can make usc of the network best. Implantation model

can be extended and used for future work as follows:

I- Security Model: In our work, we did not tackle the problem of network
securily feature. A robust security model can be added to the model.
Jonathan (1999) discussed such issues for mobile code paradigm.

2- Rooming Agent: this can be casily implemented by modifying the HLL by
adding constructs to inform the program about the environment it is running

in (Implanted). such as where it is now and where to go.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

a3

3- Parallel programming can also be implemented by allowing the NCe to

parallel execute the main program locally and at the same time send EU to

other NCs to be exccuted with synchronization mechanism. Implementation

can be casily achieved if Java programming language is used. Automatic
code-analysis techmiques must be used if we need to increase the level of

transparence and automation for the execution of the implanted code.

4- We believe that designing a new paradigm as a hybrid from all paradigms is
a new pioncered approach. It will be the solution of all computational

probleims in the future.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

64

Appendix A

EBNF for Simple Pascal Language

program
program-heading block "."

program-heading
program identifier ";"

block
declaration-part statement-part

declaration-part
[type-definition-part |
{ variable-declaration-part]
procedurc-and-function-declaration-part

type-definition-part
type type-definition ";" { type-definition ";" }

type-definition
identifier "=" typc

variable-declaration-part
var variable-declaration

L]

;" { variable-declaration ;" }

vatiable-declaration
identifier-list ":" type

procedure-and-function-declaration-part
{ (procedure-declaration | function-declaration) ;" }

procedure-declaration

"t

procedurc-heading ";" procedure-body
procedure-identification ";" procedure-body

procedure-body
block

function-declaration

n, ot

function-heading ";" function-body
function-identification ";" function-body

function-body
block

'All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

63

Statement-part
begin statement-sequence end

Procedure and Function Definitions

procedurc-heading
procedure identifier [formal-parameter-list |

function-heading
function identifier [formal-parameter-list } ":" result-type

result-type
type-tdentificr

procedure-identification
procedure procedurc-identificr

function-identification
function function-identifier

formal-parameter-list
"(" formal-parameter-scction { ";" formal-parameter-scction ¥)"
p ; P

formal-parameter-section
value-parameter-section |
variable-parameter-section |
procedurc-parameter-section |
funclion-parameter-section

value-parameter-section
identifier-list ":" parameter-type

variable-parameter-section

TN

var identifier-list ":" parameter-type

procedurc-parameter-section
procedure-heading

[unction-parameter-scetion
function-heading

parameter-ty pe
typc-identificr | conformant-array-schema

conformant-array-schema
array-schema

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

66

array-schema
array "[" bound-specification { ";" bound-specification } " "
of (type-identifier | conformant-array-schema)

bound-specification

oIt

identificr ".." identifier ":" ordinal-typc-identifier

ordinal-type-identifier
type-identifier

Statements

stalement-sequence

no

statement { ;" statcment }

statcment
(simple-staiement | structured-statcment)

simple-statement
[assignment-statement | procedure-statement |

assignment-statement
(vartable | function-identificr) ":=" expression

procedure-statement
procedurc-identificr [actual-parameter-list]

structured-statement
compound-stalcment | repetitive-statement | conditional-statement | with-statement

compound-stalement
begin statement-sequence end

repetitive-statenient
while-statement | repeat-statcment

whilc-statcment
while cxpression do statcment

repeal-statement
repeat stalement-scquence until expression

initial-expression
expression

final-expression
expression

conditional-statement
if-statement | casc-statement

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

67

if-stalement -
if expression then statement [clse statement

aclual-parameter-list
"(" actual-parameter { "," actual-parameter })"

actual-parameter
actual-value | actual-variabie | actual-procedure | actual-function

actual-value
expression

actual-procedure
procedure-identifter

actual-functlion
function-identifier

Expressions

expression
simple-expression [relational-operator simple-expression]

simple-expression
[sign] term { addition-operator term }

lerm
factor { multiplication-opcrator factor }

factor
variable | number | string | constant-identifier | bound-identifier | function-
designator } "(" expression)"

relational-operator
Il:rl I IP<>|I i PI<TI | H<=II | IT>!I I Il>x"

addition-operator

e ' n_n

multiplicalion-opcrator
LLE 31 I |1‘||H| I dlv

variable
entire-variable | component-variable | referenced-variable

cntire-variable
variable-tdentificr | ficld-identificr

component-variable
indexed-variable | field-designator | file-buffer

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

68
indexed-variable
array-variable "[" expression-list " J"

ficld-designator
record-variable "." field-identifier

[unction-designator
function-identificr [actual-parameter-fist]

Types .

type
simple-type | structured-type | type-identifier

simple-type
subrange-type

subrange-type
lower-bound ".." upper-bound

lower-bound
constant

upper-bound
constant

structured-type
unpacked-structured-type

unpacked-structured-type
array-type | record-type

array-type
array "[" index-type { "," index-type } "]" of element-type

index-type
simple-type

clement-type
Lypc

record-type
record field-list end

" All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

69

Record Fields

field-list
[(fixed-part [";"]}

fixed-part
record-section { ";" record-section }

record-section
identifier-list ";" type

Variable and Identifier Catepories

identificr
letter { letter | digit }
file-variable
variable
record-variable
variable
actual-variable
variable
array-vartable
variable
field-identifier
identifier
constant-identificr
identifier
variable-identifier
identificr
type-identifier
identificr
procedure-identifier
identifier
function-tdentificr
identificr
bound-identifier
identilier

variable-list

variable { "," variable }
identificr-list

tdentifier { "," identifier }
expression-list

expression { "," expression }
number

integer~-number | real-number
integer-number

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

70

digit-sequence
real-number

digit-sequence "." [digit-sequence] [scale-factor] |

digit-sequence scale-factor
scale-factor

("E" | "e")} [sign] digit-sequence
unsigned-digit-sequence

digit { digit }
digit-sequence

[sigh] unsigned- dl},lt-scquence
sign

I|+!I | |I_I|
letter

"nn

IIAIF | |1131P I !ICIl I llDPI ' HE‘I I ||I:‘rl ’ HG" I I!I_Ill | ?IIII I lFJl! ‘ FIKH | PILFI I llMl? I "er | HOIT |

"plf | HQ!I I !PRTI | PISH I TITIT "UFI I I?Vrl HW” |

I|'Xl| I Tl'Yll | tl7t| | 1 | Hljlf 1 n it | d” | LIyl I FI[WI [Itglf | "ll" I "ot I njn | Ilklf | Illtl I?].rl"

|I PI “L) .) (" (LI 1] T FI "l” "Ll" tm..n ” n
I}(rl lf| !l[| |F| t I I ’ [| |
digit

IPOH [I1]II | ll2|l | rl3!l I l}4ll | ITSIT ‘ rl(}n | II'?H | I|8It | PI9rI

" All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

71

Appendix B

Basic Instruction Set for the Stack Machine

Mnemonic
0 pushcl
1 pushl
2 popl

3 pushgl
4 popgl
5 fetchl
6 popil
7 pusha
8 pushga
33 pushs

39 storel

9 addl
10} subl
11 mull
12 divl
13 negl
16 eql

. 17 nel

i}

Parameter Aclion
ClI SP =8P+ 1; Stack[SP] :=CI,
0 SP = 8P + 1; Stack[SI"] ;= Stack[FP+O];
O Stack[[FP40] = Stack|SP]; SP =8P - 1;
N,O §SpPp=8P+1, Sla.ck[SP] := Stack[base(N)+Q],
N, O Stack[basc(N,.FP)-%O] := Stack[SP]; SP :=SP - 1;
Stack[SP] := Stack[Stack[SP]];
Stack[Stack[SP-1]] = Stack[SP]; SP := SP - 2;
O SP := SP -+ 1; Stack[SP] : FP+0;
N, O SP:=8P+ 1; Stack[S"] ;= basc(N,FP}+Q;
CS SP := 8P + 1; Stack[SP] := &CS;
Stack[Stack[SP-1]] := Stack{SP]; Stack[SP-1] := Stack[SP];
SP:=8P-1;
Stack{SP-1] := Stack{SP-1] + Stack[SP]; SP :==S8P - I,
Stack[SP-17 := Stack[SP-1] - Stack[SP]; SP == SP - 1
Stack[SP-1] := Stack[SP-1] * Stack[SP]; SP :=SP - 1;
Stack[SP-1] = Stack[SP-1] div Stack[SP]; SP :=SP - 1;
9 2 9 419{10]{[81’] = - Stack[SP]

Stack[SP-1] := ord(Stack[SP-1] = Stack[SP]); SP := 8P - ;

Stack[SP-1] := ord(Stack[SP-1] < > Stack[SP]); SP:=8P - 1;

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

181

19 lel

20 gtl

21 gel

22 jumpz
23 jumpnz
24 jump
25 enter
26 alloc
36 setrvl
27 return
35 rcturnf
28 call

14 int

15 inth
142 {it
143 fitb

255 stop

L,N

72

Stack{SP-1] := ord{Stack[SP-1] < Stack[SP]); SP :=SP - 1;
Stack[SP-1] = ord(Stack[SP-1] <= Stack[SP]); SP :=SP - 1,
Stack{SP-17] := ord(Stack[SP-1] > Stack[SP]); SP := 8P - 1;
Stack[SP-1] = ord(Stack[SP-1] >= Stack[SP]), SP :=8P - 1,
if Stack[SP] =0 tl;:en PC :=&L; SP :=SP - 1;

if Stack[SP] <> 0 then PC := &L; SP :=SP - [;

PC =&L;

Stack[SP+1] := base(N,FP), Stack{SP+2] := FP; SP :=SP + 5,
SP =8P +N;

Stack[FP] := Stack[SP]; SP .= 8P - 1;

SP :=TP - 1; PC := Stack{FFP+4]; FP ;= Stack[FP+1];

SP := I'P; PC := Stack[FP+2]; FP := Stack[FP+1];

FP := SP - (N+4); Stack[FP+4] := PC; PC = &L,

Stack{SP] = trunc(Stack|SP]);

Stack[SP-1] := trunc(Stack[SP-11);

Stack[SP] = [loat(Stack[SP]);

Stack[SP-1] := float(Stack[SP-1])

halt;

where base(N,I'P?) = IP il (N=0)

= base(N-t stack|FP+1]) il (N!=0)

'All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

73

Appendix C

Test program Pptest.p

program main;
var result:integer;
procedure fact(n:integer);
var i,1,p : integer;

procedure mul(nl:integer;n2:integer),
begin

p:=nl*n2;
end;

hegin
=1
r:=1;
while (i<=n) do
begin
mul(r,i);
r=m
=i+l
end;
result:=r;
cad;

begin
fact(5);
end.

Assembly code for Pptest

$mul2
alloc 0
pushga | .8
pusha 5
fetehl
pusha 6
[etehi
muil
popil
return

$lactl
alloc 3
pusha 6
pushel 1
popil
pusha 7

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

$3

34

main

pushcel 1
popil

pusha 6
fetchl
pusha 5
{eichl
lel
jumpz $4
enter 0
pusha 7
fetchl
pusha 6
{fetchl
call $mul2 2
pusha 7
pusha §
[etehi
popil
pusha &
pusha 6
fetchl
pushcl |
addl
popil
jump $3

pushga | S

pusha 7
fetehl
popil
return

enter

alloc]

enicr O

pushel 5

call $factl]
stop

74

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Test program ptest.p

program s;
var res : inteper;
procedure f(n:integer);

var i1 : integer;
begin
i=1;
i=l;
while (1<=n) do
begin
ri=r*i;
1:=1+1;
end;
Tes:=r;
end;

begin
[{6);

end,

Assembly code for ptest.p

31
alloc 2
pusha 6
pushcl |
popil
pusha 7
pushcl 1
popil
$2

pusha 6
fetchl
pusha 5
fetchl
lel
jumpz $3
pusha 7
pusha 7
fetcht
pusha 6
fetchl
mul|
popil
pusha 6
pusha 6
fetchl
pushcl 1
addl

popil

75

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

$3

main

jump $2

pushpa
pusha 7
fetchl
popil
return

enter O

alloc 1
enter {
pushcl 6
call $ft 1

stop

5

76

“All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Test program 1000.p

program s;
var res: integer;
procedure loop;
var i,3,k,r : integer;
begin
1:=0;
while (i<10) do
begin
3=0;
while (j<1000} do
begin
k:=0;
while (k<1000} do
begin
k=K,
end,;
=t
end;
=1+,
end;
res:=i;
end;
begin
loop;
cnd,

Assembly code for 1000.p

$loopl
alloc 4
pusha 5
pushcl 0
popil

$2
pusha 5
fetchl
pushel 10
[t
jumpz $3
pusha 6
pushcl 0
popil

$4

77

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

$6

$7

$5

$3

main

pusha 6
fetchl
pushcl 1000
[t -

jumpz $5
pusha 7
pushcel 0

popil

pusha 7
fetehl
pushel 1000
1t
jumpz $7
pusha 7
pusha 7
fetehl
pushel]
addl
popil
jump $6

pusha ¢
pusha 6
fetchl
pushcl 1
addl
popil
jump $4

pusha 5
pusha 5
fetchl
pushel 1
addi
popil
jump $2

pushga |)
pusha 5

fetehl

popil

return

enter 0

alloc 1
enler O

call $loopl ,0
stop

78

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

79

Appendix D

Table of Symbol used

Symbol mcaning
ATl Application Program Interface
CORBA Common Object Request Broker Architccture
DCOM Distributed Component Object Model
DNS Distributed Name Service
EU Execution Unit (Procedure, Function, Subroutine, ... etc)
EULT lExccution Unite Lookup Table
HLL High Level Languages like (Pascal, FORTRAN ... etc)
MATD Mobile Agent Platform
NC Network Computation
‘| NCe Network Computation Client
NCM Network Computation Model
NCN Network Computation Node
NCNet Network Computation Network
NCr Nctwork Computation Registry
NCs Network Computation Server
PLLAN Programming Language for Active Networks
PVM Parallel Virtual Machine

RE manager

Simplified NCe : Remote Execution Manager

RMI

Remote Method Invocation

RPC Remote Procedure Call

TCPAP Transmission Control Protocol / Internet Protocol
UGAVAC A stack oriented machine named UGAVAC
URL Universal Resource Localor ’

VM Virtual Machine

VMServer Simplified NCs : Virtual Machine Server

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

80

References

Al Geist, Adam Beguclin, Jack Dongarra, Weicheng Jiang, Robert Manchek and Vaidy
Sunderam, “PVM: Parallel Virtual Machine: user guide and tutorial for networked

parallel computing” MIT Press, London, 1994.

Alicc Fischer, Trances Grodzinsky, ‘The Anatomy of Programming Languages”,

Printice Hall, 1993.
Andrw S, 'I'ancnl)a.um, “Distributed Operating Systems ", Prentice Hall, 1995,

Anthony D. Joseph, Joshua A. Tauber and M. Frans Kaashoek, “Mobile Computing

with the Rover Toolkit”, IEEE Transactions on computers, Vol 46, No 3: March 1997.

Antonio Carzaniga, Gian Pictro Picco and Giovanni Vigna, “designine distributed
B) : k

application with mobile code paradigms ”, 1997.
Arthur Dumas, “Programming WinSock ", Sams publishing, 1995.

. g) . woAnd
Barry Witkinson, “Computer Architecture : design- and performance ™ 2" cdition,

- Prentice Hall, 1996, P225-441.

Bibliography on Soflware Agentsl, Heikki Helin,University of Helsinki, department

of Computer Science, May 18, 1999 http://www.cs.helsinki.fi/~hhelin/agents/agent-

bib.html,

" All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

81

Cornell Theory Center, "Tools for Source code analysis |

hitp://www.ic.cornell.cdu/Parallel. Tools/sre-analysis-tools.html

Doreen Y, Cheng, “A Survey of Parallel Programming Languages and Tools”, NASA

Ames Research Center, 1993.

Elliotte Rusty Harold, “Java Network Programming”, O’REILLY, 1997.

Fred Halsall, "Data Communications, Compuiter Networks and Open Systems ™

Addison-Weslcy, 1996.

G. Adomi and A. Pogg, “MAP: A language for modeling multiple agent systems”

1993.

George Necula and Peter Lee, "Research on Proof-Carrying Code of Untrusted-Code

Security ", 1997.

George R. Desrochers, “Principles of Parallel and Multiprocessing *, McGraw-Hill,

1987.

Gerard Holzmann and Bjor Pehrson, "7he Early History of Data Networks Napoleon's

Internet ", 1994,

Henri k. Bal , " Report on the Programming Language Orca”, Dept. of Math. And

Computer Science, Vrije Universiteit ,1994

3

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

82

Henri E. Bal, "4 comparative study of five parallel programming languages”, Vrije

Universiteit amsterdam, 1991

James Gosling , Bill Joy and Guy Steele, "The Java Lan"guage Specification”, Addison-

Wesley, 1996

Jim Farley, “Java Distributed Computing ", O’'REILLY , 1998.
Jonathan T. Moore, “Mobile Code Security Technigues ", University of Pennsylvania,

1999.

Kristian Paul Bubendorfer, “"Resource Based Policies for Load Distribution”, Thesis,

Victoria University of Wellington, 1996.

.. V. Kale, "The Charm Parallel Programming Language”, University of Illinois,

1994,

Michael Hicks and Angelos D. Keromytis, "Ad Secure Plan ™, University of

Penusylvama, 1999.

Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scotl Nettles,

"Network Programming using PLAN ", universily of Pennsylvania, 1998.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

B3

Open Group , “Network Computer”, C720 February 1998.

P. Emerald Chung, Yannun Huang, Shalini Yajnik, Decron Liang, Joanne C. Shih,.

Chung-Yih Wang and Yi-Min Wang, “DCOM and CORBA Side by Side, Step by Step,

and Layer by Layer ", AT&T Labs, 1997.

-«

Pankaj Kakkar, “The Specification of PLAN (Draft1)”, DARPA , July 1999.

Peter Domel, “Mohile Telescript and the web ", 1EEE computer socicty press, 1996.

Rajive Bagrodia and Wen-Toh Liao, “Maisie User Manual, Rel 2.2 University of

California, 1995.

Renhard Wilhelm and Dicter Maurcr, "Compiler Design”, Addison-Wesley , 1995.

Robert Macgregor, Dave Durbin John Owlett and Adrew Ycomans, “Java Network

Security ", Prentice-Hall, 1998,

Russian Academy of Sciences, “The mpC programming Language specification”

kel

1997,

Sun Systems, “The Java Virtual Machine Specification” Rel 1.0 Sun Systems, 1995.

Tommy Thorn, “Programming Languages for Mobile Code”, ACM Computing

Surveys, Vol. 29, No, 3. September 1997.

'All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

At
ua:‘v.b
A e ol 8 jos plusant LWl a2 it ajﬁéjl,;ﬂo\};i

Mgl

e gl dag dilis

e
S Py S W
J@lib@wcami@ﬁwbjaw1 dhaw! g i B st (3 Lo o Wy g B e
e Y plsa o JLaait a5 e VA ey ety 2 iy U IS phasat 1S
izl G ks N G LI ST oW ¢Q&?ﬂl@}w:¢ajﬁdbmlp_grl__ﬁ'!ohég 8l b
AN iy Pzl 23U s @ WL W oda 3 LI A Il) Ay S0y) l) B
CIRR i o e e T L Nl s dydor hal A1

Jmplantation "%t H" aad g5 pad

LBl jor e Ly SN Ry (3 A Bconiad) 3Lt Jamy Bt 3 g0 Rt o (3 Lslaiat O}
FENPO PRI S W UL IS PRL IR VIOL WNEERRUICH P PR ESURCHI IS PR E LR PRV PRI

.CDP-Classilication sle*t Ay L] R g~ it
el " 55" g o ¢ AN A2 I O (Bl BV L st SO e gl 3 e gl ¢ A
S8 o Y s O ¢ e Jani SO gl Bty aadt Ypuiams o e gl 3 A Y odn

oSl ik 3 et e 11k st

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

	

